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Abstract. A Green functionG, at peak-timer, decomposes into spherical waves. These
are strong in the source vicinity, where they accumulate into a reconstifijetthat is either
relatively weak or comparably strong. Approximations are secured with relative error estimates
for dispersive and nondispersive continua. Applications are demonstrated in elasticity, plasma
physics, superfluid physics and micropolar elasticity.

1. Introduction

The time-harmonic three-dimensional (3D) Green function [1], which describes a medium’s
response to a pulsating point sousoee—" takes the waveform |x| =t expli(a|z| —wt)] in
classical areas such as acoustics and electrodynamics. The amplitudgafactondicates

an outward spherical attenuation starting from the point source; near this, the wave is
relatively strong. Sets of similar waveforms that exhibit the same attenuation fagtor

are known to exist in multimode systems such as those found in elasticity [2], plasma physics
[3] and, more recently, in microstructured elasticity [4]. When those waves accumulate in
the source vicinity wherein they are relatively strong, is the net effect there comparably
strong like|z|~! or, perhaps, even stronger? It will be shown within a somewhat general
context that,over a sequence of peak timdahe net effect there cannot be strongleuat
behaves likgx|* with s € {—1,1,3,5,...}; i.e.itis either comparably strong or weaker in
relation to each individual waveThe reason for this will become apparent. The order
determined by neither continuum parameters nor the source frequeruy solely by two
Laplacian indices of the governing equation. Our analysis will also yield, for dispersive
or nondispersive continua, a complete near-source approximation of that net effect with a
bound for the relative errorFor nondispersive continua, however, the approximated form

is w-independent and holds not only for sm&#| (and anyw) but also for small|w| at

any off-sourcex; moreover, it rectifies another possible misconception conveyed by the
individual wave amplitudes (as these can approach infinity enee 0) and, additionally,
offers inferences for radiation protection and static-state attainment. The objective, then, is
to establish those approximations and to understand how they physically emerge through
a reconstitution from waves of a decomposed Green function. This approach is significant
because the decomposed version, although correct, becomes deceptive and misleading under
the specified circumstances. Applications will be treated.

2. Green function

This investigation concerns a Green functiot{xz, t) due to the pulsating point source
8(x)coswt(w # 0) immersed inside an unbounded 3D continuum that responds in
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accordance with

L(8%/31%, V3G = M(3?/81?, V)8 (x) coswt (1)
where
[4
L£(82%/0%,V?) = Z L, (8%/0t3)V? €>1,L,#£0, Lo#0 (2)
r=0
M@?/01%,V?) = > M, (8%/915)V* m>0M,=#0 (3)

L., M, being polynomials id?/9:? and possessing uniform coefficients;= 0 corresponds
to a Laplacian-freeM = My(# 0). The situation presented arises, in the most classical
sense, in acoustics and electrodynamics witk= 82/3:> — ¢?V? (¢ = wave speed) and
M = 1 or 3%/91?, depending on the response tlGtrepresents. A radiation condition
[5-7] is invoked for a time-harmonic state by giving the source an artificial growth
€’ (e > 0) which is communicated to the time-harmonic respo@seso that this becomes

= %[Gi(w)é“” + G¢ (x)e”"']e?’. In terms of a Fourier integral [8, 9] involving even
functions

@) =M(—(oFie)?, —a®)  Li(a) =L(—(oFie)? —a’)
transformed from the operatoyst and £, the spatial factor [3, 5-7]

GS = (2m)73 fff expli ((||K||)) d*k.

To reduce this, we perform a positive rotational transformationcoilo getk X = a =
|| (Sin® cosVy, sin® siny, cos®)(0 < O < 7,0 < ¥ < 27) whereX = (wl,wz, )
a 3 x 3 rotational matrix whose columns are transposes (signified“{syjperscrlpts) of
a right-handed set of three mutually orthogonal unit vectoysxy, 3 = x|z|~t. The
Jacobiama/dk = detX = 1; also,|a|? = aa’ = k X XTk" = |k|?. Thus

G;:(zn)*e'/ d|a||a|2j—a/ d@sin@exp(ilapccos@)/ dw
0 +(al) Jo 0

= (47'r2xi)_l/OO o exp(iax)w do 4)
) (@)

with x = |x|. Suppose
Li(—0?) #0 Lo(—»® #0 My (—w?) #0

for our choice of source frequeney. The dispersion functioﬁ(a) = L(—w? —a?) then

has¢ symmetric pairs of nonvanishing zeros at, say= o;(w), —o;(w) (j = 1,...,£),

which we assume are all real, distinct and nonstationary at the selected frequenbgse
assumptions hold for the classical elasticity, plasma, superfluid and micropolar elasticity
applications which will be treated. Obviously, in eagh pair, one zeray;, say, satisfies
oj(w) > 0. It suffices that 2 0. Then the integrand in (4), when extended into the complex
o- plane is meromorphic W|th one set of simple polesrat o;(w) F iew(w) Within the
half-space : Ina < 0 and another set of simple polescat- —a;(w) = Iea "(w) within the

conjugate half- space Im> 0. During off-source observations, > 0, correspondlng to
<
which, a convergence condition of Jordan’s lemma is satisfied withi@ #0 if

L>2m+1
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which is, henceforth, assumed. Contour integration may then be applied to (4). A radiation
conditioned solution i€ (x, ) = lim._.o G¢. In this paper we are particularly interested in
its value

G,(x) = Gz, t,) at any instant, = n|w| ™! n=12 ...

when the temporal source factor easpeaks. Thereupon, residue theory yields

4 o
Gy = (=D"2rx)™ ) a; cosle;x) M(ay)/ L (o)) )

j=1

Where/fxt(a) = M(—w?, —a?). G, is thus decomposed intbspherical cosine waves that
are attenuated like . Conversely, they tend to become singularly strong: approaches
the source. It will, however, transpire that this feature can be deceptive as it need not be
imparted toG, in the source vicinity. That;(w) > 0 for each wave implies that its group
velocity (with which its sustaining energy propagates [5—7]) points radially outwards from
the source. Our wave spectrum is multimodé if 2.

Our subsequent interpretation relies on a reconstituted versi6r,db be derived from
(5). First, we apply Taylor's theorem and incorporate (3) to get

m

N 4 o
Gy = (-1"@m)™ Z(—l)’Mr(—wz)[ (=D Y eI L))
r=0 s=0 j=1

4 o
HDV 2N + 201 o2 (cogy)/ z:’(om}
j=1

with N =¢—r—1(notethat —1> N >£—m—12>0), 0< |y;| < |oj|x for eacha;x.

Now,
4 ° ¢ o o
ajZ(r+s)+1/ £'(a)) = % aj2<r+x>+1/ L'(a) + (—a_,-)z(’“)“/ £'(~a))
j=1 j=1
1 [ o2t 0 0<s<N-1(¢>2)
Sl pe) { (-D'@Li(-o™ ™ s=NE=1

I being any origin-centred, closed circular anticlockwise contour circumscribing all zeros

of Z(a), i.e. all singularities of the meromorphic integrand involvédmay therefore be
allowed to expand into the infinite domain. Consequently, the reconstituted Green function

Gy =¢n+& by = AW x2E=m=3 ©
A(”) = (_1)”+1Mm(—wz)[4nL[(—w2)(2(g —m— 1))]] 1 (7)
& = (—1)"(271)*1 Z(Ar _ Br)x2(£7r)71 (8)
r=0
Z o]
A = (=D)'M, (=0 /(2(¢ — r))! Za12€+1(cosyj)/ﬁ/(aj) r=0,....m )
=1

Bo=0 B, = M,_1(—?)[2L¢(—0?)(2(€ — r)1] 71 r=1,....,m1. (10)
The reconstituted wavefield approximation

G, ~ ¢n (11)
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holds, subject to a relative errg@y,/¢, that can be rendered as small as is tolerable by
locating the observation poiat sufficiently close to the source, namely, given any positive
v, however small, and any distange

£ VV|A®|B-1 m=0
2 if 0 12
.= s min(\/u|A<n>|Bfl,x) 1<m<e—1 12)
B=(@2u) 'Com=0) @) ') (BI+CHP""  (d<m<e-1)  (13)
r=0
¢ o
Cr = M, (—?)|/ 2 — DV 1oy 1P/ L ()] (14)

j=1

For such a proximityG,, = O(x2¢~~3) and, unlike its wave constituents in (5), is therefore
weakif £ > m + 2 but, like those wave constituents,sisong like x~* if £ =m + 1. (Note

that 2¢ —m) —3e{-1,1,3,5,...} sincel > m + 1, so thatG, cannot be stronger than
O(x~1).) This phenomenon exhibited by the net wavefield depends solely on the Laplacian
index differential¢ — m between theC and M operators of the transmitting continuum. It

is independent of all material coefficients as well as the vibration frequendgowever,

the approximated wavefield itself does, according to (6), (7) and (11), depend on those
material coefficients found in thas,,, L, operators and, if these actually involgé/a:2,

on w as well. A necessary but insufficient criterion for the near-figld= O(x?(¢——3)

to be weak is that > 2, i.e. it should be multimodeThe near-singularO(x~?) effects

of its ¢ wave constituents are mutually neutralized to some extent through an interaction
between theircog;x) sinusoidal factors near the source so as to soften the net near-field
when? > m 4 2. The associated small relative error is bounded in accordance with (12),
regardless of whethep, is weak or strong near the source.

3. Nondispersive continuum

The approximation secured can also apply beyond the source neighbourhood. To illustrate
this, we focus on aondispersive continuuf®]. This is characterized bg and M operators
that are homogeneous #t/3r% and V2

4
L£(0%/31%,V?) = Z LV (3/01)2¢ " LE#0 Ly+#0 (15)
r=0

M@%/312, V3 =3 MFVZ (3/91)%" " M* #0 (16)
r=0

Ly, M} being uniform material coefficients. Classical elastic medium and Landau’s
superfluid, to which our results will be applied in due course, are nondispersive. Classical
acoustic and electromagnetic radiation propagate as single-mode wavefields through

nondispersive media. Now, the scaledfree dispersion functiorf(k) = L(-1,—1?
possessed symmetric pairs of nonvanishing-independent zeros at, say, = A;,
—Aj(j =1,...,¢), assumed to be all real and distinct with, say,> 0. The radiation
conditioneda;-wavenumbers, each complying wittj(w) > 0 and the assumptions made
on it, are ther; = wi;(j = 1,...,¢). The group and phase velocities of each radiation
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conditioned wavefunction are then equal and directed radially outwards. From (5),

4 *
G, = (—1)%2("’*”1)(2“)*1ijcos(w,\jx)/\/t(—l, -5/ L0y (A7)
j=1

which, since?¢ > m + 1, apparently suggests that, unless= m + 1, |G,| — oo as
o — 0 which, in turn, implies that a stable static state cannot be attained=aD. Such
an impression, as we shall soon realize, is false. Thus, while (5) and (17) hold for all
x(# 0) and allw (# 0), their representations can be misleading for smahd smalkw. To
interpret correctly, we again employ (6)—(10) and note that-»?) = (—1)* 7w L?,
M, (—0?) = (=" " 0?™ ) M*. So

AW = ()" PIMA AL (206 —m — 1)t (18)
which is noww-independent; also, on introducing the parameters

B} =0 B = M’ ,|[2|L}12(¢ — r)] 7t r=1....,m (19)
l

Cr = M1/ = )Y 21 L) (20)
j=1

|0/ bnl < 27| APDTEY (B, + Chp ) (jol0) 2 (21)
r=0

follows and governs the relative error incurred in théndependent approximation
Gn ~ ¢n — A(n)xZ(Efm)73 (22)

for a small|w|x, e.g. for finite|w| and smallx (so thatG, is weakor strong according
as?¢ > m+ 2 or¢ = m+ 1 respectively) or for finitec and small|w|; the same small
relative error controlled by (21) applies to both of these cases. We now infemtttlir

a nondispersive continuungi) a G,-recorder is almost completely protected from finite-
frequency radiation when located sufficiently near the sourceaéip — 0 (and, hence,
nr = |w|t, — 0), G — ¢o at every finitex(# 0) and thusattains a static vibration-free
state With reference to (i), at a high-frequency, the source peaks rapidly between small
time intervals ofr |w|~%, and the relative errolt,/¢,| is negligible if 0< x <« |w|™, in
which eventx receives rapid ‘flashes’ across an alternating sign sequen@Gg-tdrms that,
otherwise, does not vary with, is virtually w-free and virtually the same as the static state
G at zero frequency. We shall proceed to consider various applications.

4. Applications

4.1. Elasticity

The displacementu generated by a point-concentrated body forfs (x) coswt in
classical elastic material, characterized by its equivoluminal and dilatational wave speeds
a, c(> a~/2), satisfies [2]

wg = fod(x) coswt — a’V x (V x u) + c¢?VV - u.
Then

u = foK1+ (c* —a®)VV - foK> (23)
where

L,(3%/81%, VOK, = §(x) coswt s=1,2
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an equation of the form (1) with
32/9t% — a?v? s=1
L,(0%/01%, V?) =
/ (02/01% — a®V?)(8%/01% — c?V?) s=2

these being homogeneous operators of the type (15)é&witHl(s = 1), 2(s = 2). Classical

elastic material is clearly nondispersiv,ékf(k) = L,(—1, —1?) has distinct symmetric pairs
of real zeros determined A% = 1(s = 1), a®A? = 1 = ¢?A%(s = 2). It ensues from (6),
(18)—(22) that, at each peak instapt= n|w| ™2,

KX(EC, tn) = ¢s,n + gs,n

which, for smalljw|x, is almostw-independent, being approximately

. (—1)"(4ma’x)~t s=1
T (i Bra?dt s =2
subject to a small @|w|x)?) relative error:
1
£ §(|a)|x)2a_2 s=1
s.n g
¢S,n

]_iz(lél)lﬁf)z(a4 +cMae)y2(c? —a?t s =2.

Ki(x,1,) is strong whileK,(x, ,,) is weak nearc = 0; however, both are finite for finite
x but small|w|. Their exact versions are, by (17),

(=D"cosX,

A xa?
cosX, — COSX,.

A xw?(c? — a?)

Kl(lf, tn) =
Ka(z, 1,) = (-1)"

whereX, = wxa™ !, X, = wxc™t. These versions independently confirm tat(x, ,) =
O(x~1) while Ky(x,1,) = O(x) near the spot where the body force is applied. Each
peak-time elastic displacement is then, from (23),

(_1)}1
4 x

u(x, t,) = {0_2903 x (fo x ©3)€0SX, + ¢ ?x3(fo - £3)COX,

3z3(fo- z3) — fo

+
w?x?

(X,SinX, — X.sinX,. + cosX, — cosXC)}

(x3 = xx~! being the unit radial vector); in fact, it exhibits that form to which the Stokes
elastic displacement [10, 11]

(4nx>—1{a—2m3 x (fox ®)T(t —xa™) + ¢ 2x3(fo- z3)T(t — xc ™)

x/a
+x?[Bz3(fo - x3) — fol / tT(t — 1) dr}
x/c

(namely, one caused by an arbitrarily time-dependent concentrated bodyf§écag T (¢),)
specializes for a sinusoidal temporal facfof) = coswt at each instant when this peaks.
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4.2. Plasma physics

An electron particley = god(x—x4) COswt and a concentrated forge= fod (x—x;) CoSw?

in a warm collisionless plasma with thermal spegdight speed:» (> ¢1), plasma frequency
w,(# 0), unit electronic mass and electronic charge jointly induce a deviation/ in the
electronic number density, an excited electron veloeityexcited electric and magnetic
fields e, b that satisfy [3]

wﬁe + c%Vd + wﬁvt =—f b=—-cVxe
d,—i—a)iV-U:q, et=62VXb+a)§v.
Whereupon,
v = a);z[—f + cfwquVKl(a: —xq, 1) — ciVV - foKi(x — x5, 1)]
+foKa(x — x4, 1) + (2 — H)VV - foKa(x — x4, 1)

for which £,(82/012, V?)K,(x, t) = §(x) coswt (s = 1, 2, 3), another equation covered by
(1) with

Ly = 0%/01* = 2V + 2 s=1,2 L3= L1L>.
Assuming || > |w,|, Li(—w? —a?) releases distinct symmetric pairs of real zeros

determined by-?a? = 0? — w3 (s = 1, 2), cda® = ? — 0% = c5a®(s = 3). Whereupon, (6),

(7) and (11)—(14) yielK,(x, t,) = ¢;., + &, Which, for smallx, can be approximated by

. (—1)" (4 c?x) 7t s=1,2
e (=1 x(8rc2cd)~t s=3

the relative error incurred being, for an arbitrarily small positive

V2vet/ Jw? — w? s=12

2clcz\/3v(c§ — cf)/\/(a)2 — a)i)(c‘lt +¢3) s =3.

gs,n
¢x,n

<v if0 <x <

4.3. Superfluid physics

Consider Landau’s superfluid with uniform equilibrium parameters of entsppgmperature
0, pressurep, superfluid, normal and total densitigg, p2, p = p1 + p2. Suppose a
fluid sourceq = god(x) coswt creates perturbations, e.g,, v, in superfluid and normal
velocities. The governing equations [12] can be manipulated into the matrix form [13]

D02/312, V?) (: > = A'BC! (VO" )
where
D(9?/3t%,V?) = AV? — 19%/01>
I being the identity matrix whileA = A—BC~1D; here,
a=(35) p=(i )

_( (00/3p)e (9p/96),
©= ((3(p5)/3p)9 (3(05)/39)p) b

P P2
0 pS)°
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A, B, D are nonsingular; so i€ since the Jacobiaf(p, S)/d(p,6) = p~tdetC and is
implicitly nonvanishing in the mappingo, S) = (p, 6). Let

detD = £(8%/912, V?) (@adj D)AIBC™ = (M) 5—12.
Then

v, = qoVK, r=12

where LK, = M,18(x) coswt, which also comes under (1) with= 2 since dejd # 0,
while 0 < m < 1. As D is homogeneous ih?/3:?> and V2, so areL and every
M,,. Landau’s superfluid is therefore nondispersivé.has two eigenvalues? : 2c2 =

242+ \/(cf + ¢5)2 — 4y~1cic5 > 0, wherey = C,/C,(> 1) with specific heat<, =

_ : 2 ,dpy . (38/86), 2 _ p1S%0 S2(3p/dp)e -
0(3S/36),, Cy = 6(35/06),, while cf = (32)s = S G =50 — oS,
c1 is the ordinary sound speed in a classical Euler fluid. The relevant dispersion function
Z(/\) = L(-1,—-2?) = detI — 12A) has two distinct symmetric pairs of real zeros
determined by21? = 1 = ¢212. Consequently, the nondispersion results (17)—(22) apply
together with their implications.

4.4. Micropolar elasticity

This is linked to microstructured elasticity [4], which is relevant to the technology of modern
materials, e.g. for the construction and aerospace industries. The micropolar elastodynamic
formulation [14] of displacement and microrotatioryp produced by a concentrated body
force foé(x) coswt can be recast as

u = foK1+ VV - foK> Y = wfV x foKs
where
L:(0%/01%, VO K, = M (8%/0t2, V?)8(x) coswt s=1,23
My = 8%/31% — c2V? + 203 My = (2 =AMy + Ew? Mz=1
L1 = L3 = M[8?/3t* — (c5 + c5) V] + c503V? Lo = L4[8%/31% — (c3 + 3V
which are covered by (1)—(3) with = 2(s = 1,3), 3(s = 2), andm = 1(s = 1),
lor06 = 2,¢1 # ¢c2 0fr c1 = ¢2), 0(s = 3); c1,...,cq4 are micropolar elastic
wave speeds whilesd = c2¢71, ¢ denoting micro-inertia. Assumingw| > |wo|/2,
Ly(—w?, —a?) has, fors = 1, 3, two distinct symmetric pairs of real zeros determined by
a? = = %a‘l(b:i:\/A)(> 0) with a = ci(c%—i—c%), b= a)z(c§+c§+ci) —w§(2c§+c§),
A = [0%(c5— 53— c3) + wi(2c5+cd)]? +4w’wicscs and, fors = 2, three distinct symmetric
pairs of real zeros determined lyf = o3, w?(c? + ¢3)~1. Whereupon, near the point of
force application,
K (x, 1) = 0(xH(s =1) O(x) or Ox3)(s =2, 1 # ¢ OF 1 = C2)

Ox)(s = 3).
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